Combining Screen-Space Ambient Occlusion and
Cartoon Rendering on Graphics Hardware

Brett Lajzer
Dan Nottingham

Figure 1: Four visualizations of the same scene: a) no SSAO or outlining, b) SSAO, no outlines, c) no SSAO, outlines, d) SSAO and outlines

1. Motivation

Methods for non-photorealistic rendering of 3D scenes have
become more popular in recent years for computer
animation and games. We were interested in combining
two particular NPR techniques: ambient occlusion and
cartoon shading. Ambient occlusion is an approach to
global lighting that assumes that a point on the surface of
an object receives less ambient light if there are many other
objects occupying the space nearby in the hemisphere
around that point. Screen-space ambient occlusion
approximates this on the GPU using the depth buffer to test
occlusion of sample points. We combine this with cartoon
shading, which draws dark outlines on objects based on
depth and normal discontinuities, and thresholds lighting
intensity to several discreet values. We wanted our results
to be applicable to games and thus had to be implemented
as shader programs on the GPU to achieve interactive frame
rates.

2. Related Work

Ambient Occlusion

Ambient Occlusion is an approximation to global
illumination that assumes that, for any given point on a
surface, the amount of ambient light reaching that point
will depend on how much of the hemisphere surrounding
that point is occupied by occluding objects. In theory, this
involves integrating a visibility function over all the angles
in the hemisphere. In practice, this integral is usually
evaluated using some form of Monte Carlo ray casting.

Screen-Space Ambient Occlusion

Screen-space ambient occlusion (SSAO) is a further
approximation of this technique, which was developed by
CryTek for their game Crysis and its engine. This version
computes ambient occlusion for each pixel visible on the
screen, by generating random points in the hemisphere
around that pixel, and determining occlusion for each point
by comparing its depth to a depth map of the scene. The
sample is considered occluded if it is further from the
camera than the depth of the nearest visible object at that
point, unless the difference in depth is greater than the
sample radius. The advantage of this method is that it can
be implemented on graphics hardware and run in real time,
making it more suited to dynamic, interactive scenes due to
its dependence only upon screen resolution rather than
scene complexity. The main disadvantage is that it
considers only information for the front-most geometry
visible to the camera. For instance, a very long object will
not occlude surfaces behind it, since the samples are only
compared against the depth of the face closest to the
camera.

3. Implementation

We implemented our techniques in OpenGL and GLSL.
Most of our work is done in the fragment (pixel) shader
stage of the pipeline, and not at the vertex level. The scene
is rendered in several passes, rendering intermediate results
to textures: first we acquire depth and normal information,
next we compute the ambient occlusion, then we blur the
SSAO results, then calculate lighting, and finally we draw
outlines.

Pass 1: Depth and normal

In this step, we render the entire scene, outputting a color
based on the normal at each pixel. Normal vectors are
specified per vertex and interpolated across the triangle. At
each pixel, we output the x, y and z components of the
normal as the r, g and b components of the color, which is
rendered to a texture. This step fills up the depth buffer,
which we also store as a texture.

Figure 2: The eye-space normals of the scene.

Pass 2: Screen-space ambient occlusion

Here we compute the ambient occlusion at each pixel. We
render a single quad that fills the screen, textured with the
depth map from the previous pass and a randomized set of
vectors given as a texture. The fragment shader generates
eight random sample points within a radius by taking eight
uniform points and reflecting them using a sample from the
vector map. The depth map is sampled at each of these
points, and if the depth at that point is greater than the
depth at the pixel being calculated, we increase occlusion at
that point by 1. The occlusion is then mapped from O to 1
and we output 1 — occlusion as the color.

7 4

Figure 3: The raw output of the SSAO shader.

Pass 3: Blurring the SSAO

Because of the random sampling, the output of the ambient
occlusion step is very noisy. We compensate by blurring
the image using a 3x3 Gaussian filter. This is done by
again mapping the texture to a quad and rendering it, and in
the fragment shader, outputting the color as a weighted
average of that pixel and the eight pixels surrounding it.
This is applied several times, and smooths out the noise in
the ambient occlusion considerably.

Figure 4: The blurred SSAO.

Pass 4: Lighting and color

The entire scene is rendered again in order to apply shading
based on lighting and color. Standard per-pixel Phong
lighting is used to calculate the intensity, but we also apply
the brightness sampled from the ambient occlusion map.
While theoretically this value would be used as the ambient
term, we found that for our purposes, the best look was
achieved by multiplying the diffuse and ambient terms by
the value, then also adding some extra ambient. Specular
highlights are not affected. The intensity is then clamped to
a small number of threshold values to produce cartoon-like
shading, and multiplied by the object color to produce the
result.

Figure 5: The Phong interpolated lighting for the scene.

Pass 5: Outlining

The final pass draws cartoon-like outlines on top of the
image produced by the previous result. The shader is given
the stored depth and normal textures, and examines them
for discontinuities. At each pixel, we sample the depth and
normal at that point and the eight points surrounding it in a
square. We compare each sample to the center point,
looking at the dot product of the normals and the difference
in depth. If either violates a certain threshold for any
sample, we consider that a discontinuity, and color that
pixel black to create an outline. The depth discontinuities
do a good job of finding the outer edges and silhouette of
an object, but fail if the difference in depth between two
objects is too small. Normal discontinuities find the sharp
ridges on the surface of an object, and also tend to find
outer edges if the normals between an object and the one
behind it are fairly different. By combining the two
methods, we usually find all the significant features that
should have an outline drawn for them.

Figure 6: The final composited scene with outlines.

4. Results

As can be seen from the images in Appendix B, the
application of Screen-Space Ambient Occlusion to cartoon
shading has remarkable results. From figure 1, one can see
that even without the thick outlines, SSAO can provide
visual cues that help separate foreground and background.
Adding outlines gives a distinct visual style that further
enhances the details of the scene. This technique brings out
topological details that are missed by both the Phong
shading and the thick, black outlines, and it provides visual
cues in the form of soft shadows/halos around objects. We
also feel that the effect is quite pleasing and certainly adds
more visual depth to a scene.

It also runs at interactive speeds, although with newer
hardware, achieving realtime speeds would not be a
problem.

5. Conclusions

SSAO Implementation Issues

Our implementation of SSAO makes a number of
approximations. First of all, a sample is occluded even if
the difference in depth is very large. This leads to some
amount of over-occluding, but the resulting silhouettes
actually work fairly well with our non-photorealistic style.
Also, we sample within a sphere around each point, rather
than a hemisphere based on the direction of the normal.
This leads to some self-occlusion on flat surfaces, as some
sample points will fall behind the surface itself and count as
occlusions. However, we found that the number of samples
for which this occurs is low enough that our value mapping
technique eliminates this. Finally, we don't actually use the
z-value of our random sample points, but rather the depth
of the pixel being calculated. Essentially, this means that
our sample points all fall on a plane and have the same
screen-space z position, rather than being distributed
throughout a sphere. We don't believe that this makes a
very significant impact on our results, however.

Most of these inaccuracies in our implementation are due
mainly to the limitations on the size of shader programs for
our target hardware. The device we programmed for (ATI
FireGL V3200) only supports up to Pixel Shader 2.0, which
limits it to only 768 instructions per shader (as opposed to
65536 for 3.0). Since our SSAO shader has to iterate over
eight samples, and since 'for' loops in GLSL are unrolled
due to the lack of branching, we found ourselves very close
to the instruction limit. Even a few small steps added inside
the loop would put us over this limit, causing the shader to
either crash or run in software at unacceptably slow speeds.
Since we found that these details were not essential for
fairly good-looking SSAO, we decided not to implement
them to cut down on the instruction count.

Potential for Use

We feel that this technique has great potential for use as
more companies look toward NPR shading techniques for
use in games and hardware becomes increasingly more
powerful. With more powerful hardware, proper SSAO can
be implemented, which will achieve much smoother and
more accurate results. Adding shadows and textures to this
technique would fully complement and complete the visual
style.

6. Bibliography
[1] Finding Next Gen — CryEngine 2, Mittring (2007)

[2] Non-Photorealistic Rendering with Pixel and Vertex
Shaders, Card, Mitchell

Appendix A: Code Listings

Listing 1: Screen Space Ambient Occlusion Shader

/] ssao.fs
"

/I Screen Space Ambient Occlusion
uniform vec3 sample_points[8];

uniform sampler2D s_depth;
uniform sampler2D s_norm;

#define dp 1.0/512
const float radius = 16 * dp;

void main(void)
{
/lget the depth
vec4 f_depth = texture2D(s_depth, gl_TexCoord[0].st);
vec3 f_norm = normalize(texture2D(s_norm, gl_TexCoord[1].st).xyz);

float occlusion = 0.0;

float depth_sample;

vec2 sp;

for(int i=0; i < 8; i++)

{
sp = radius * (reflect(sample_points[i], f_norm).xy) + gl_TexCoord[0].st;
depth_sample = f_depth.r - texture2D(s_depth, sp).r;

//if the sample is closer than the current pixel -> occlude
if(depth_sample > 0)// && depth_sample < radius * 0.05)
{

}
}

occlusion += 1.0;

if(occlusion < 5.0){
occlusion = 0;
}else{
//quadratic mapping
occlusion = pow(occlusion, 2.0) / 64.0;

}

//output shade
gl_FragColor.rgb = vec3(1.0-occlusion);

Listing 2: Per-Pixel Specular Toon Lighting Shader

/I specular.fs
"
/I per-pixel specular lighting

varying vec3 N, L;
varying float specularExp;

uniform sampler2D sampler(;

void main(void)
{
//get SSAO value
float ao = texture2D(sampler0, gl_FragCoord.xy/512.0).r;

vec3 NN = normalize(N);
vec3 NL = normalize(L);
vec3 NH = normalize(NL + vec3(0.0, 0.0, 1.0));

/I calculate diffuse lighting
float intensity = (max(0.0, dot(NN, NL)) + 0.1) * ao + 0.2;

vec3 diffuse = gl_Color.rgb * intensity;

// calculate specular lighting
vec3 specular = vec3(0.0);
if (intensity >= 0.0 && specularExp > 1.0)
({
intensity += pow(max(0.0, dot(NN, NH)), specularExp);
}

intensity = floor(intensity * 4.0) / 4.0;

// sum the diffuse and specular components
gl_FragColor.rgb = gl_Color.rgb * intensity;
gl_FragColor.a = gl_Color.a;

}

Listing 3: Toon Outline Shader

// toon_outlining.fs
"

/I Depth discontinuities for toon outlining
vec2 offsets [8];

uniform sampler2D s_depth;
uniform sampler2D s_norm;

void main(void)

{
vec4 depth = texture2D(s_depth, gl_TexCoord[0].st);
vec4 norm = texture2D(s_norm, gl_TexCoord[0].st);
float dp = 1.0/ 512.0;

offsets[0] = vec2(-dp,-dp);
offsets[1] = vec2(-dp,0);
offsets[2] = vec2(-dp,dp);

offsets[3] = vec2(0,-dp);
offsets[4] = vec2(0,dp);

offsets[5] = vec2(dp,-dp);
offsets[6] = vec2(dp,0);
offsets[7] = vec2(dp,dp);

float darkness_depth = 0.0;
float darkness_norm = 0.0;

float base_depth = depth.r;
vec3 base_norm = normalize(norm.xyz);

float threshhold_depth = 0.05 * (1.0 - depth.r);
float threshhold_norm = 0.95;

for(inti=0;1i< 8; i++)
{
depth = texture2D(s_depth, gl_TexCoord[0].st + offsets[i]);

norm.xyz = normalize(texture2D(s_norm, gl_TexCoord[0].st + offsets[i]).xyz);

if (abs(depth.r - base_depth) > threshhold_depth) darkness_depth += 1.0;
if (dot(norm.xyz, base_norm) < threshhold_norm) darkness_norm += 1.0;

}
float illum = 1.0 - (darkness_depth + darkness_norm);

gl_FragColor.rgb = vec3(illum, illum, illum);
gl_FragColor.a = 1.0;

Appendix B: Sample Images

Sample 1: terrain.obj Sample 2: room.obj
Scene without SSAO Scene without SSAO

Scene with SSAO Scene with SSAO

Sample 3: solids.obj Sample 4: pink.obj

Scene without SSAO Scene without SSAO
Scene with SSAO Scene with SSAO

